A Free Product Formula for the Sofic Dimension

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Free Product Formula for the Sofic Dimension

It is proved that if G = G1 ∗G3 G2 is free product of probability measure preserving s-regular ergodic discrete groupoids amalgamated over an amenable subgroupoid G3, then the sofic dimension s(G) satisfies the equality s(G) = h(G01)s(G1) + h(G 0 2)s(G2) − h(G 0 3)s(G3) where h is the normalized Haar measure on G. Let G be a group. The sofic dimension of G is an asymptotic invariant that accoun...

متن کامل

Sofic Mean Dimension

We introduce mean dimensions for continuous actions of countable sofic groups on compact metrizable spaces. These generalize the Gromov-LindenstraussWeiss mean dimensions for actions of countable amenable groups, and are useful for distinguishing continuous actions of countable sofic groups with infinite entropy.

متن کامل

Sofic Dimension for Discrete Measured Groupoids

For discrete measured groupoids preserving a probability measure we introduce a notion of sofic dimension that measures the asymptotic growth of the number of sofic approximations on larger and larger finite sets. In the case of groups we give a formula for free products with amalgamation over an amenable subgroup. We also prove a free product formula for measure-preserving actions.

متن کامل

A Formula for the Direct Product of Crossed Product Algebras

tive radius r. Let the center Xo be the sequence {&?}, and let 5 be chosen so large that 2~~ + 2~ s 2 + • • • k Q s. If we define xi as (ki, &2> ' * • » $j j8+i, is+2, • • • ), then xi belongs to K and limn fn(xi) = + °°Consequently xi cannot be a point of Up and this contradiction establishes U as a set of the f...

متن کامل

A Divergence Formula for Randomness and Dimension

If S is an infinite sequence over a finite alphabet Σ and β is a probability measure on Σ, then the dimension of S with respect to β, written dim(S), is a constructive version of Billingsley dimension that coincides with the (constructive Hausdorff) dimension dim(S) when β is the uniform probability measure. This paper shows that dim(S) and its dual Dim(S), the strong dimension of S with respec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian Journal of Mathematics

سال: 2015

ISSN: 0008-414X,1496-4279

DOI: 10.4153/cjm-2014-019-5